3.297 \(\int \cos (c+d x) (a+b \sec (c+d x))^3 (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=119 \[ \frac{b \left (6 a^2 B+6 a A b+b^2 B\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a^2 (2 a A-b B) \sin (c+d x)}{2 d}+a^2 x (a B+3 A b)+\frac{b^2 (2 a B+A b) \tan (c+d x)}{d}+\frac{b B \sin (c+d x) (a+b \sec (c+d x))^2}{2 d} \]

[Out]

a^2*(3*A*b + a*B)*x + (b*(6*a*A*b + 6*a^2*B + b^2*B)*ArcTanh[Sin[c + d*x]])/(2*d) + (a^2*(2*a*A - b*B)*Sin[c +
 d*x])/(2*d) + (b*B*(a + b*Sec[c + d*x])^2*Sin[c + d*x])/(2*d) + (b^2*(A*b + 2*a*B)*Tan[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.223205, antiderivative size = 131, normalized size of antiderivative = 1.1, number of steps used = 6, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {4025, 4048, 3770, 3767, 8} \[ -\frac{b \left (2 a^2 A-3 a b B-A b^2\right ) \tan (c+d x)}{d}+\frac{b \left (6 a^2 B+6 a A b+b^2 B\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+a^2 x (a B+3 A b)-\frac{b^2 (2 a A-b B) \tan (c+d x) \sec (c+d x)}{2 d}+\frac{a A \sin (c+d x) (a+b \sec (c+d x))^2}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x]),x]

[Out]

a^2*(3*A*b + a*B)*x + (b*(6*a*A*b + 6*a^2*B + b^2*B)*ArcTanh[Sin[c + d*x]])/(2*d) + (a*A*(a + b*Sec[c + d*x])^
2*Sin[c + d*x])/d - (b*(2*a^2*A - A*b^2 - 3*a*b*B)*Tan[c + d*x])/d - (b^2*(2*a*A - b*B)*Sec[c + d*x]*Tan[c + d
*x])/(2*d)

Rule 4025

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*n), x]
+ Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n + 1)*Simp[a*(a*B*n - A*b*(m - n - 1)) + (
2*a*b*B*n + A*(b^2*n + a^2*(1 + n)))*Csc[e + f*x] + b*(b*B*n + a*A*(m + n))*Csc[e + f*x]^2, x], x], x] /; Free
Q[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LeQ[n, -1]

Rule 4048

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_)), x_Symbol] :> -Simp[(b*C*Csc[e + f*x]*Cot[e + f*x])/(2*f), x] + Dist[1/2, Int[Simp[2*A*a + (2*B*a + b*(
2*A + C))*Csc[e + f*x] + 2*(a*C + B*b)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \cos (c+d x) (a+b \sec (c+d x))^3 (A+B \sec (c+d x)) \, dx &=\frac{a A (a+b \sec (c+d x))^2 \sin (c+d x)}{d}-\int (a+b \sec (c+d x)) \left (-a (3 A b+a B)-b (A b+2 a B) \sec (c+d x)+b (2 a A-b B) \sec ^2(c+d x)\right ) \, dx\\ &=\frac{a A (a+b \sec (c+d x))^2 \sin (c+d x)}{d}-\frac{b^2 (2 a A-b B) \sec (c+d x) \tan (c+d x)}{2 d}-\frac{1}{2} \int \left (-2 a^2 (3 A b+a B)-b \left (6 a A b+6 a^2 B+b^2 B\right ) \sec (c+d x)+2 b \left (2 a^2 A-A b^2-3 a b B\right ) \sec ^2(c+d x)\right ) \, dx\\ &=a^2 (3 A b+a B) x+\frac{a A (a+b \sec (c+d x))^2 \sin (c+d x)}{d}-\frac{b^2 (2 a A-b B) \sec (c+d x) \tan (c+d x)}{2 d}-\left (b \left (2 a^2 A-A b^2-3 a b B\right )\right ) \int \sec ^2(c+d x) \, dx+\frac{1}{2} \left (b \left (6 a A b+6 a^2 B+b^2 B\right )\right ) \int \sec (c+d x) \, dx\\ &=a^2 (3 A b+a B) x+\frac{b \left (6 a A b+6 a^2 B+b^2 B\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a A (a+b \sec (c+d x))^2 \sin (c+d x)}{d}-\frac{b^2 (2 a A-b B) \sec (c+d x) \tan (c+d x)}{2 d}+\frac{\left (b \left (2 a^2 A-A b^2-3 a b B\right )\right ) \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=a^2 (3 A b+a B) x+\frac{b \left (6 a A b+6 a^2 B+b^2 B\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac{a A (a+b \sec (c+d x))^2 \sin (c+d x)}{d}-\frac{b \left (2 a^2 A-A b^2-3 a b B\right ) \tan (c+d x)}{d}-\frac{b^2 (2 a A-b B) \sec (c+d x) \tan (c+d x)}{2 d}\\ \end{align*}

Mathematica [B]  time = 0.962975, size = 399, normalized size = 3.35 \[ \frac{\sec ^2(c+d x) \left (\left (a^3 A+2 b^3 B\right ) \sin (c+d x)+\cos (2 (c+d x)) \left (-b \left (6 a^2 B+6 a A b+b^2 B\right ) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+b \left (6 a^2 B+6 a A b+b^2 B\right ) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )+2 a^2 (c+d x) (a B+3 A b)\right )+6 a^2 A b c+6 a^2 A b d x+a^3 A \sin (3 (c+d x))-6 a^2 b B \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+6 a^2 b B \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )+2 a^3 B c+2 a^3 B d x-6 a A b^2 \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+6 a A b^2 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )+6 a b^2 B \sin (2 (c+d x))+2 A b^3 \sin (2 (c+d x))-b^3 B \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+b^3 B \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x]),x]

[Out]

(Sec[c + d*x]^2*(6*a^2*A*b*c + 2*a^3*B*c + 6*a^2*A*b*d*x + 2*a^3*B*d*x - 6*a*A*b^2*Log[Cos[(c + d*x)/2] - Sin[
(c + d*x)/2]] - 6*a^2*b*B*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - b^3*B*Log[Cos[(c + d*x)/2] - Sin[(c + d*x
)/2]] + 6*a*A*b^2*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + 6*a^2*b*B*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]
] + b^3*B*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + Cos[2*(c + d*x)]*(2*a^2*(3*A*b + a*B)*(c + d*x) - b*(6*a*
A*b + 6*a^2*B + b^2*B)*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + b*(6*a*A*b + 6*a^2*B + b^2*B)*Log[Cos[(c + d
*x)/2] + Sin[(c + d*x)/2]]) + (a^3*A + 2*b^3*B)*Sin[c + d*x] + 2*A*b^3*Sin[2*(c + d*x)] + 6*a*b^2*B*Sin[2*(c +
 d*x)] + a^3*A*Sin[3*(c + d*x)]))/(4*d)

________________________________________________________________________________________

Maple [A]  time = 0.054, size = 172, normalized size = 1.5 \begin{align*}{\frac{A{a}^{3}\sin \left ( dx+c \right ) }{d}}+B{a}^{3}x+{\frac{B{a}^{3}c}{d}}+3\,A{a}^{2}bx+3\,{\frac{A{a}^{2}bc}{d}}+3\,{\frac{B{a}^{2}b\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+3\,{\frac{Aa{b}^{2}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+3\,{\frac{Ba{b}^{2}\tan \left ( dx+c \right ) }{d}}+{\frac{A{b}^{3}\tan \left ( dx+c \right ) }{d}}+{\frac{B{b}^{3}\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{2\,d}}+{\frac{B{b}^{3}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{2\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+b*sec(d*x+c))^3*(A+B*sec(d*x+c)),x)

[Out]

a^3*A*sin(d*x+c)/d+B*a^3*x+1/d*B*a^3*c+3*A*a^2*b*x+3/d*A*a^2*b*c+3/d*B*a^2*b*ln(sec(d*x+c)+tan(d*x+c))+3/d*A*a
*b^2*ln(sec(d*x+c)+tan(d*x+c))+3/d*B*a*b^2*tan(d*x+c)+1/d*A*b^3*tan(d*x+c)+1/2/d*B*b^3*sec(d*x+c)*tan(d*x+c)+1
/2/d*B*b^3*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 0.982723, size = 228, normalized size = 1.92 \begin{align*} \frac{4 \,{\left (d x + c\right )} B a^{3} + 12 \,{\left (d x + c\right )} A a^{2} b - B b^{3}{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, B a^{2} b{\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, A a b^{2}{\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, A a^{3} \sin \left (d x + c\right ) + 12 \, B a b^{2} \tan \left (d x + c\right ) + 4 \, A b^{3} \tan \left (d x + c\right )}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^3*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

1/4*(4*(d*x + c)*B*a^3 + 12*(d*x + c)*A*a^2*b - B*b^3*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c)
+ 1) + log(sin(d*x + c) - 1)) + 6*B*a^2*b*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 6*A*a*b^2*(log(sin
(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 4*A*a^3*sin(d*x + c) + 12*B*a*b^2*tan(d*x + c) + 4*A*b^3*tan(d*x + c
))/d

________________________________________________________________________________________

Fricas [A]  time = 0.562001, size = 401, normalized size = 3.37 \begin{align*} \frac{4 \,{\left (B a^{3} + 3 \, A a^{2} b\right )} d x \cos \left (d x + c\right )^{2} +{\left (6 \, B a^{2} b + 6 \, A a b^{2} + B b^{3}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left (6 \, B a^{2} b + 6 \, A a b^{2} + B b^{3}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (2 \, A a^{3} \cos \left (d x + c\right )^{2} + B b^{3} + 2 \,{\left (3 \, B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^3*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(4*(B*a^3 + 3*A*a^2*b)*d*x*cos(d*x + c)^2 + (6*B*a^2*b + 6*A*a*b^2 + B*b^3)*cos(d*x + c)^2*log(sin(d*x + c
) + 1) - (6*B*a^2*b + 6*A*a*b^2 + B*b^3)*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2*(2*A*a^3*cos(d*x + c)^2 + B
*b^3 + 2*(3*B*a*b^2 + A*b^3)*cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))**3*(A+B*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.22502, size = 325, normalized size = 2.73 \begin{align*} \frac{\frac{4 \, A a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1} + 2 \,{\left (B a^{3} + 3 \, A a^{2} b\right )}{\left (d x + c\right )} +{\left (6 \, B a^{2} b + 6 \, A a b^{2} + B b^{3}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) -{\left (6 \, B a^{2} b + 6 \, A a b^{2} + B b^{3}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) - \frac{2 \,{\left (6 \, B a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 2 \, A b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - B b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 6 \, B a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, A b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - B b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^3*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

1/2*(4*A*a^3*tan(1/2*d*x + 1/2*c)/(tan(1/2*d*x + 1/2*c)^2 + 1) + 2*(B*a^3 + 3*A*a^2*b)*(d*x + c) + (6*B*a^2*b
+ 6*A*a*b^2 + B*b^3)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - (6*B*a^2*b + 6*A*a*b^2 + B*b^3)*log(abs(tan(1/2*d*x
+ 1/2*c) - 1)) - 2*(6*B*a*b^2*tan(1/2*d*x + 1/2*c)^3 + 2*A*b^3*tan(1/2*d*x + 1/2*c)^3 - B*b^3*tan(1/2*d*x + 1/
2*c)^3 - 6*B*a*b^2*tan(1/2*d*x + 1/2*c) - 2*A*b^3*tan(1/2*d*x + 1/2*c) - B*b^3*tan(1/2*d*x + 1/2*c))/(tan(1/2*
d*x + 1/2*c)^2 - 1)^2)/d